How will the development of Artificial Intelligence affect the role of the Knowledge Manager?
There is a lot of discussion on Artificial Intelligence as part of Knowledge Management, and the use of powerful computing to replace the reliance on experts. As discussed here, the expert, in a rule-based scenario, is seldom better than a smart computer, and the computers are closing the gap that remains. Is there still a role for KM and the Knowledge manager as the computers get smarter?Take the vision below, from an IBM Watson TV commercial.
Here the company expert, Jack, is on holiday and is replaced by Watson, who can give advice just as good as Jack's, and in some cases, in Jack's own words. Engineers using Watson can "access 30 years of experience in seconds" according to the commercial, which is exactly what we are seeking for in KM. Knowledge which used to live only in the expert engineer's head is now available to all at the point of need. Knowledge, through the application of AI, has become common property, easily accessed.
The benefits of this use of AI are considerable (please note that I am not, in this post, addressing the use of AI to search for correlations and patterns in big datasets; I am looking more at the retrieval of actionable advice).
What AI is doing here is automating the supply chain for knowledge, and removing the bottleneck which the expert previous represented. It represents some of the automated augmentation of knowledge work that will help increase the productivity of the knowledge worker, and help up meet Drucker's "50-fold productivity increase" challenge.
As a result, the knowledge workers get quicker access to better knowledge, the organisation is protected against the loss of experts and the risk of problems onsite, and more can be done with fewer people.
It is probably inevitable that the number of knowledge workers will decrease as this sort of AI-related augmentation is used more and more. Think for example of the reduction in support-centre staff as the use of AI chatbots and technology such as Watson is used to answer customer queries, rather relying on human staff drawing on a Knowledge Base platform.
But what about the knowledge managers? Will they still have a job in the new world?
Yes, they definitely will.
AI like Watson in the video above interrogates structured and unstructured information, and rapidly retrieves an answer to a question, providingthat answer in the context of the enquirer. But someone has to make sure the knowledge is in the system already, and much of it is not. Even if it is in the system, the AI needs the language to be able to understand the question and to retrieve possible answers, and to have algorithms tuned well enough to judge the right answer. So the Knowledge Manager may have some or all of the following jobs to do:
- Capture the tacit knowledge in the first place. In many organisations, much or most of the crucial knowledge is still in people's heads, and therefore completely inaccessible to AI. Some of it may never be captured. In the video above, how do you think Jack's knowledge became accessible to Watson? Not through trawling Jack's emails, but through a well-planned knowledge elicitation exercise, involving the skills of knowledge management.
- Add the events which have not yet happened. This is another class of "knowledge not yet captured". In the example above, the records will be full of data and information related to the normal running of the plant, but will rarely have much on operations "outside the envelope" - when something has gone wrong. I remember a knowledge capture session I did once with a senior engineer, and he told me his favourite way to train new guys was to give them out-of-the-box examples to work with. "Imagine pump 3 has stopped, pipe 7 is running at 500 degrees, and there's smoke coming from the turbines. What do you do? Watson would not know what to do unless the knowledge manager puts examples like this into the dataset.
- Clean the knowledge base. The biggest problem with AI is poor data, and AI starts with clean data. AI retriving knowledge starts with clean knowledge, and thats a job for the knowledge manager, as most knowledge bases I have seen are decidely unclean. For example a Watson-like AI acting as a chatbot answering customer queries needs a clean, reliable and constantly updated knowledge base just as much as contact centre agents do, and the knowledge manager makes sure that the knowledge base is managed well.
- Build the ontology. Semantic search such as Watson's relies on a really good ontology, so Watson can make sense of the question, and can identify classes of answers from the existing documentation. Who will write the ontology? The knowledge manager will, with the help of the experts.
- Oversee the training. AIs need to be trained, and this can be a big job. As this KM World article points out, "it is reported that it took a core team of 20 researchers to build Watson’s Jeopardy-beating machine (along with a strong support team to aid in those efforts). Likewise, the AlphaGo team spent 18 months researching the very complex game of Go (with 20 core researchers publishing their paper in Nature)".
- Tune the algorithm. Not every AI has got the algorithm right, and a wrong algorithm can be a disaster. Microsoft shut down a bot called Tay after pranksters pushed it to make racist, sexist and pornographic remarks, for example. At the time of writing, AI needs a lot of guidance before it can work on its own.
- Continually improve the knowledge supply chain. New knowledge comes in all the time. This needs to be added to the knowledge base. The performance of the company needs to be tracked, and you need to look at the lessons. Sometimes the AI needs tweaking. All of these things are jobs for the knowledge manager.
There are also circumstances where AI doesn't yet work well.
As this bloomberg article points out:
"Machine learning works best in an environment with rules and huge numbers of data points. That might work with cars driving through heavy traffic governed by laws, or with achieving the best price for selling a big block of shares. It might not work well in deciding where to invest a hedge fund’s money, for example, or recommending products to customers without much previous data to go on. The minute things get fuzzy—either due to a lack of rules, an unclear evaluation of success or a lack of data—artificial intelligence performs poorly".
In a fuzzy and complex world, you are out of the realm where experts, expert systems and AI function well. Here you need the knowledge networks and the communities of practice, who can draw on their collective tacit experience. And helping build and sustain these networks is part of the role of the knowledge manager. AI can do nothing with tacit knowledge.
The number of knowledge managers in the AI world may well increase, not decrease.
Knowledge managers, and allied disciplines such as content managers and data scientists, will quite possibly be in greater demand if the use of AI increases as some commentators predict. For example, according to the bloomberg article quoted above
"These limitations (of AI) mean it’s not yet clear that the cost of automation will be offset by savings in human capital. Hiring a data scientist can cost more than $200,000, according to Bloomberg News. Flight-bookings company Amadeus has 40 of them. Siemens says it has more than 200 A.I. specialists running various projects. And even Silicon Valley has its grunt workers: Facebook is hiring 3,000 content moderators, on top of 4,500 existing ones. A.I. cheerleader Amazon has 341,000 employees—three times the number it had in 2012".
AI does not mean that knowledge management is dead, and the knowledge manager is out of a job. It adds a new and powerful technology to the knowledge managers arsenal, and changes the nature of some of the knowledge manager's tasks and adds new ones, while other tasks remain just as they were.
No comments:
Post a Comment